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Motivation for Current Profile Control in NSTX-U

@ Some of the next-step operational goals for NSTX-Upgrade include [1]:

— Non-inductive sustainment of the high-5 spherical torus.
— High performance equilibrium scenarios with neutral beam heating.
— Longer pulse durations.

@ Active, model-based, feedback control of the current profile evolution
can be useful to achieve those stability and performance criteria.

@ The g-profile, which is related to the toroidal current density in the
machine, plays an important role in the stability and performance of a
given magnetic configuration.

@ Availability of the additional neutral beam current sources enables
feedback control of the current profile in NSTX-U.

[1] GERHARDT, S. P. et al., Nuclear Fusion (2012).
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Model-based Feedback Control Scheme

@ The purpose of this work is to convert accepted physics-based models to

a form suitable for control design.

actuators

control-oriented

measurements

—

current-profile
controller

@ Modeling for control design and not for physical understanding!

@ The control-oriented model only needs to capture the dominant
effects of the actuators on the current profile evolution.

@ Control-oriented model will be embedded in current-profile controller.
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First-Principles-Driven (FPD) Current Profile Modeling
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First — Principles — Driven (FPD) Current Profile Evolution Model

@ Empirical models take a “separation of variables” form, i.e., the
spatial-temporal dependence of plasma parameters is separated.

@ Modeling of electron temperature admits different levels of approximation.
Ad-hoc transport models can be parameterized and tuned to data from
experiment or predictive simulations by higher-accuracy transport codes.

@ Fixed 2D MHD equilibrium = Extension to variable equilibrium possible

@ Model includes nonlinear coupling between different plasma profiles.
FPD modeling allows for further integration (e.g., rotation profile).

@ FPD modeling approach arbitrarily handles trade-off between simplicity of
model and both its physics accuracy and range of validity.
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Magnetic Diffusion Equation

@ Using ® = 7B, 0p* and p = p/p», the safety factor (g-profile) is expressed
as:

(py=Ll__92__d°® _ Sy __Beoskd (1)
BPU=27700 = " 2nd ~ 2n % 0 /0p
@ The evolution of the poloidal magnetic flux is given by [2]:
oY ﬂ(Tg) 10 (AAAAaiﬁ) A <‘7N]'B>
— = ~ — —( pFGH—== | + RyHn(T,) —————, 2
ot Lyp2F? pop p op oH(Te) Byo @)
where the parameters F, G and H are geometric factors pertaining to the
magnetic configuration of a particular plasma equilibrium given by:

. RoBy o R R _ ., . F
F = _ G = —_— v H = 7’ 3
RB4(R,Z) <R2| d (R2/R?) )
@ The boundary conditions are given by:
o oY 1o Ry
9 = 9% = —2*%1(0» (4)
P =0 Plp=1 m G’ H’
p=1 lp=1
[2] OU, Y., et al., Fusion Engineering and Design (2007).
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Electron Density Model

@ Assume tight coupling between electron and ion species in plasma, i.e.,
T.(p, 1) = Ti(p,t) and n.(p, 1) = n;(p, 1).

@ Assume control action employed to regulate electron density weakly
affects radial distribution of the electrons.

@ Electron density n.(p,t) is then modeled as:
ne(p, 1) = n™ (p)un (1) (5)

— " (p) is a reference electron density profile, which is the actual electron
density profile taken at a reference time 1., selected by the designer, i.e.,

"™ (p) = ne(p, 1) (6)
— uy(r) regulates time evolution of electron density.
@ In this work, electron density is considered as an uncontrolled but

measurable input. This decision is motivated by the fact that tight control
of n.(p, t) in experiments is in general very challenging.
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Electron Temperature Model

@ Slowly evolving electron temperature profile evolution modeled as:

ke, (5, 12) [12°0 (5, 1) — T2 (puy, 1]
To(pot) = { LD Pun()me(po ) + T2 (piyo), 0 < p<
p)

ib (7)
7 (p, 1y), P < p<1

— 10" (p,1,) is the electron temperature profile taken at the reference time, 7,,
pw is the spatial location of the transport barrier in the plasma, I(z) is the
plasma current, P,,(t) is the total power and «, v and X are constants.

— The temperature profile model constant &z, in (7) is defined as

e (ﬁ’ t’) (8)

k(P 1) = 1) TP

@ In this work, 5, = 1. Based on the T, profile evolution, the model
constants in (7) are chosen as a = 1, v = 0.5 and A = —1. Therefore the
T, model (7) takes the final form

T (p 1)

5.0 I(1)\/Pix(t), (0<p<1) 9)

Te(pAv t) = kr, (ﬁv tr)

7/28
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Total Injected Power Model

@ Total power P,,(t) expressed as:

Plot(t) = Pohm(t) +Paux(t) - Prad(t) (10)

@ Ohmic power expressed as:

1
Pan(t) = [ i)l i~ ROV 0 (1)

— Jjwr(p, 1) is the total toroidal current density,
— R is global plasma resistance, which is expressed as:

R@“%&/Lbéw%“y

where S denotes a magnetic surface within the plasma.
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Auxiliary, Radiative Power and Plasma Resistivity

@ Auxiliary power expressed as:

Pae(t) = Pupiror(k Z Pupig (1) (12)
@ Radiative power modeled as:
Praalt / Orad(p (13)
where the radiative power density Q,,, is modeled as
Orad(pst) = kiremZegne(p, 1)/ Te(p 1), (14)

with Zg; being the effective average charge of the ions in the plasma.

@ Plasma resistivity 7(T,) scales with electron temperature as:

( D, t) = k;l:((f;:t”))f/ezﬁf ) (15)

where kg, is a constant.
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Accurate Models Used for Noninductive Current Drive

@ Total noninductive current drive in NSTX-U is produced by neutral
beam injection via the individual beamlines and bootstrap current:

]m -B Z <]nbt, ) <]bs >’ (16)

B¢0 Py B¢0 B¢o

@ The noninductive toroidal current density provided by each individual
neutral beam injector is modeled as

<] B> rof .dep TE([)vt) ) i—
s (o) =K G () Y EED P, (=12, (17

— k" are constants and j’(p) are reference deposition profiles evaluated at
the reference time, t,.

@ Bootstrap current drive expressed as [3], [4]:

(s B) . kjeyRo (O on, oT,
t)=— - 2L T,—+A12 55 1
Boo (p;1) ) <8ﬁ LaTe'ys S +{2L31+ L+ als}n 5| (19
— L31(p), L32(p), L34(p), a(p) are function of trapped fraction and collisionality.

[3] SAUTER, O. et al., Physics of Plasmas (1999).
[4] SAUTER, O. et al., Physics of Plasmas (2002).
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Fig. 1: Reference (a) magnetic configuration parameters, (b) bootstrap current coefficients,
(c) electron density and temperature profiles, (d) electron temperature and plasma resistivity
constants, (e) total NB deposition profile and NB model constant and (f) control inputs
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Qualitative Agreement of Various Plasma Profiles in

between the FPD Model and TRANSP Output
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Noninductive Current Density Profile Comparison
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Fig. 3: Noninductive current deposition profile evolution comparison: TRANSP [(a),(k)],
control-oriented model [(b),(1)].
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Poloidal Flux Profile Comparison - ¢(p), at fixed time
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Poloidal Flux Comparison
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Fig. 5: Poloidal magnetic flux evolution comparison.
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Safety Factor Profile Comparison - ¢(p), at fixed time
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Fig. 6: Safety factor profile evolution comparison.
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Safety Factor Comparison - ¢(¢) at fixed radius
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Fig. 7: Safety factor evolution comparison.
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CASE 2: Model Tailored for NSTX Run 133964D02
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Fig. 8: Reference (a) magnetic configuration parameters, (b) bootstrap current coefficients,
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constants, (e) NB deposition constants for the beamlines and (f) NB deposition profiles for the
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Qualitative Agreement of Various Plasma Profiles in

between the FPD Model and TRANSP Output
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Neutral Beam Current Density Profile Comparison
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@ NOTE: Increasing beam power does not always create an increase in the

current density profiles.
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Poloidal Flux Profile Comparison - ¢(p), at fixed time
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Fig. 12: Poloidal magnetic flux profile evolution comparison.
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Poloidal Flux Comparison - #(t), at fixed radius
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Fig. 13: Poloidal magnetic flux evolution comparison.
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Safety Factor Profile Comparison - ¢(p), at fixed time
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ig. 14: Safety factor profile evolution comparison.
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Safety Factor Comparison - ¢(¢) at fixed radius
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Fig. 15: Safety factor evolution comparison.
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Possible Uses of Control-oriented Model

1. Feedforward Control Design:

@ Achieve target plasma state evolution throughout discharge by specifying
actuator waveforms offline (actuator trajectory offline optimization), with
goal of supporting experimental effort on scenario development.

@ Study effects of different auxiliary heating/current-drive schemes on the
ability to achieve a certain plasma state.

2. Feedback Control Design:

@ Track target plasma state evolution and reject effects that external
disturbances have on plasma dynamics, with goal of running repeatable
discharges.

3. Plasma State Observers:

@ Simulate model in real-time/faster-than-real-time as discharge evolves to
obtain current/future plasma state for feedback control and disruption
mitigation. Simulations can also be constrained by real-time partial
(noisy) measurements of plasma state.
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Schematics of Plasma Profile Control Applications
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Fig. 16: Plasma profile and parameter control components.
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Conclusions

@ The nonlinear magnetic-diffusion PDE has been coupled with empirical
models for the electron density, electron temperature, plasma resistivity
and non-inductive current drive (neutral beams and bootstrap) to produce
a first-principles-driven (FPD) control-oriented model of the current profile
response in NSTX-U.

@ The control-oriented model has been recently updated to enable:
@ Separate modeling of each beamline, adding more control design flexibility.

e Time-varying modeling of magnetic geometry, increasing model accuracy
and providing a mechanism for integration with plasma shape control.

@ Predictions by the FPD control-oriented model show reasonable (for the
purpose of control design) agreement with TRANSP simulations. Further
analysis is still needed to explain some observed mismatches.

@ A numerical integration scheme for the FPD control-oriented model has
been coded in Matlab/Simuling to run simulations during the control
design stage, and in C language to run Simserver simulations during the
control implementation stage.
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